Physique-Chimie Cycle 4
Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Thème 1 - Organisation et transformations de la matière
Ch. 1
L'eau que nous buvons est-elle pure ?
Ch. 2
La matière : états, masse et volume
Ch. 3
Les changements d'état de la matière
Ch. 4
Les mélanges
Ch. 5
La matière à l'échelle microscopique
Ch. 6
Que trouve-t-on dans l'air ?
Ch. 7
Les transformations chimiques et la pollution
Ch. 8
Modélisation des transformations chimiques
Ch. 9
Les ions dans notre quotidien
Ch. 10
Quand les acides et les bases réagissent
Ch. 11
Introduction à la masse volumique
Ch. 12
La masse volumique
Ch. 13
La matière, dans l'espace et dans l'Univers
Ch. 14
De l'Univers aux atomes
Thème 2 - Mouvement et interactions
Ch. 15
Introduction à la vitesse et au mouvement
Ch. 16
Repérage de mouvement et mesure de vitesse
Ch. 17
Vitesse et mouvement
Ch. 18
Les interactions
Ch. 19
Les forces
Ch. 20
Le poids
Thème 3 - L'énergie et ses conversions
Ch. 21
Introduire la notion d'énergie
Ch. 22
Conversion et transfert de l'énergie
Ch. 23
La conservation de l'énergie
Ch. 24
Les circuits électriques
Ch. 25
La tension et l'intensité
Ch. 26
Relations entre grandeurs dans les circuits électriques
Ch. 27
Résistance et loi d'Ohm
Ch. 28
Puissance et énergie en électricité
Thème 4 - Des signaux pour observer et communiquer
Ch. 29
Le son
Ch. 30
La lumière
Ch. 31
Vitesse de propagation des signaux
Ch. 32
Des signaux au-delà de la perception humaine
Chapitre 7

La Physique-Chimie autrement

Histoire des sciences
Isaac Newton et la mécanique

Doc. 1
Les apports scientifiques d'Isaac Newton (1642-1727).

Outre ses travaux en optique, en mathématiques et en astronomie, Newton est célèbre pour ses succès en mécanique : il en a posé les trois principes de base. Ils sont en fait la conclusion d'un long travail sur les interactions, en particulier, sur l'interaction gravitationnelle !

Doc. 1 : Les apports scientifiques d'Isaac Newton (1642-1727).
Le zoom est accessible dans la version Premium.
Crédits : GL Archive/Alamy
Question
Nommer une unité avec le nom d'un scientifique est un hommage important. Qu'a fait Isaac Newton pour le mériter ?

1. Voici quelques savants qui ont contribué au développement de la mécanique : Einstein, Archimède, Newton, Galilée et Lagrange. Qui a travaillé avant qui ? Replace-les dans l'ordre chronologique !

La Physique-Chimie au quotidien
Esprit scientifique

Une expérience d'électrostatique : dévier un filet d'eau !

Doc. 1
Un fil d'eau très fin rend l'observation plus facile.

Doc. 1 : Un fil d'eau très fin rend l'observation plus facile.
Le zoom est accessible dans la version Premium.
Crédits : sciencephotos/Alamy

Matériel

  • Une paille en matière plastique.
  • Un mouchoir en papier.
  • Un robinet permettant de faire couler un fin filet d'eau.

Explication scientifique

Il y a interaction puisque le filet d'eau est dévié ! L'interaction en jeu ici est dite « électrostatique » : en frottant la paille, on lui arrache des particules électriques. La paille devient chargée électriquement et génère alors une interaction à distance sur les constituants de l'eau. Si on ne frotte pas la paille, l'interaction n'a pas lieu.
Questions

Étapes de la fabrication :

  • Frotte la paille avec le mouchoir.
  • Ouvre le robinet pour faire couler un fin filet d'eau.
  • Approche la paille du filet d'eau sans le toucher.

Des questions à se poser :

1. Peut-on dire qu'il y a eu interaction ?

2. Connais-tu l'interaction à distance qui entre en jeu ici ?

3. Essaye de refaire l'expérience sans frotter la paille. Que se passe-t-il ?

Objet d'étude
L'assistance gravitationnelle : se propulser, sans se fatiguer !

Doc. 1
Trajectoire de l'astéroïde 2004 FH le 18 mars 2014.

Doc. 1 : Trajectoire de l'astéroïde 2004 FH le 18 mars 2014.
Le zoom est accessible dans la version Premium.

Doc. 2
L'assistance gravitationnelle.

L'espace intersidéral ne contient que du vide : le Faucon Millenium y est à l'abri de toute interaction de contact. En revanche, au voisinage d'un astre dont la masse est grande, la gravitation agit et dévie le Faucon en l'attirant. S'il veut aller tout droit, Han doit pousser les réacteurs pour compenser cette attraction. En revanche, s'il veut changer de cap, il peut se servir de ces astres pour tourner sans dépenser d'énergie !

Doc. 3
La mécanique des changements de direction.

Dans l'espace, changer de direction n'est pas facile. D'ordinaire, on « tourne » grâce à une interaction de contact : les pneus avec la route, un gouvernail avec l'eau, la dérive avec l'air. Dans le vide de l'espace, on ne peut appuyer le vaisseau que sur de la matière préalablement embarquée, et en puisant dans les réserves d'énergie. Utiliser l'interaction gravitationnelle pour changer de cap est donc une manière astucieuse de naviguer en étant économe !
Questions
Avant de le lancer dans l'espace à pleine vitesse, Han calcule la trajectoire du Faucon Millenium avec soin. Toutes les interactions susceptibles d'agir sur le vaisseau sont prises en compte afin d'optimiser l'utilisation des ressources du vaisseau.

1. Dessine la trajectoire d'un objet qui tombe par terre après avoir été lâché sans vitesse.

2. Dessine la trajectoire d'un objet qu'on lance à l'horizontal et qui retombe au sol.
3. Quelle est, à ton avis, la condition que doit remplir le Faucon avant de tourner en s'aidant de l'attraction gravitationnelle ?

Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

Oups, une coquille

j'ai une idée !

Nous préparons votre pageNous vous offrons 5 essais
collaborateur

collaborateurYolène
collaborateurÉmilie
collaborateurJean-Paul
collaborateurFatima
collaborateurSarah

Premium activé


5
essais restants
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.