Soit (un) la suite définie, pour tout entier naturel n, par un=5+2n3n+2. La suite (un) :
Voir les réponses
Voir les réponses
9
Soit (vn) la suite définie par v0=1 et, pour tout entier naturel n, vn+1=10vn2−2vn+1. À l’aide de la calculatrice, on conjecture que la suite (vn) est :
Voir les réponses
Voir les réponses
10
Une suite (wn) est majorée par 4 et converge vers un réel ℓ. Alors on peut affirmer que :
Voir les réponses
Voir les réponses
11
Si n→+∞limun=+∞ et n→+∞limvn=−∞, alors :
Voir les réponses
QCM
réponses multiples
[Une ou plusieurs bonnes réponses par question]
Voir les réponses
12
Soit (un) une suite qui converge vers 1.
Voir les réponses
Voir les réponses
13
Soit (vn) une suite bornée.
Voir les réponses
Voir les réponses
14
Si n→+∞limun=+∞ et n→+∞limvn=+∞, alors on peut avoir :
Voir les réponses
Voir les réponses
15
Soient (un), (vn) et (wn) trois suites telles que un⩽vn⩽wn à partir d’un certain rang.
Voir les réponses
Problème
Voir les réponses
16
D’après bac L/ES, Métropole-La Réunion, juin 2019
Soit (un) la suite définie par u0=300 et, pour tout entier naturel n, un+1=0,96un+22.
1. On définit la suite (vn) en posant, pour tout entier naturel n, vn=un−550.
a. Montrer que la suite (vn) est géométrique. Préciser sa raison et son premier terme.
b. Exprimer vn en fonction de n.
c. En déduire que un=550−250×0,96n.
2. Déterminer n→+∞limun.
Voir les réponses
QCM supplémentaires
[Une ou plusieurs bonnes réponses par question]
Voir les réponses
A
Vrai ou faux ? Une suite qui diverge vers +∞ est forcément croissante.
Voir les réponses
Voir les réponses
B
Soient (un), (vn) et (wn) trois suites telles que un⩽vn⩽wn à partir d’un certain rang.
Vrai ou faux ? Si n→+∞limvn=+∞ alors, on a nécessairement n→+∞limun=+∞.
Voir les réponses
Voir les réponses
C
La suite (un) définie pour tout n∈N par un=(−2)n est :
Voir les réponses
Voir les réponses
D
Soient (un) et (vn) deux suites telles que n→+∞limun=0, n→+∞limvn=0 et, pour tout n∈N, vn=0. La limite de vnun :
Voir les réponses
Voir les réponses
E
La suite (un) définie pour tout n∈N par un=3n1+2n est :
Voir les réponses
Voir les réponses
F
Lesquelles de ces suites sont majorées par 21 ?
Voir les réponses
Voir les réponses
G
Parmi les suites définies ci-dessous, lesquelles sont des suites arithmétiques ?
Voir les réponses
Voir les réponses
H
Parmi les suites définies ci-dessous, lesquelles sont convergentes ?
Voir les réponses
Utilisation des cookies
En poursuivant votre navigation sans modifier vos paramètres, vous acceptez l'utilisation des cookies permettant le bon fonctionnement du service. Pour plus d’informations, cliquez ici.