Mathématiques 6e
Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Du primaire au collège
Ch. 1
Manipuler les nombres entiers
Ch. 2
Les nombres décimaux
Ch. 3
Addition, soustraction
Ch. 4
Multiplication, division décimale
Ch. 5
Fractions
Ch. 6
Proportionnalité
Ch. 7
Construction de droites
Ch. 8
Distances et cercles
Ch. 9
Angles
Ch. 10
Symétrie axiale
Ch. 11
Triangles, rectangles et losanges
Ch. 12
Aire et périmètre
Ch. 13
Volumes
Chapitre 1
Pas à pas

2. Multiples et diviseurs

A
Notion de diviseur

Découvrir

a. Effectuer de tête les divisions entières de 2, 4, 6 et 8 par 2. Qu'observe-t-on ?
b. Poser la division euclidienne de 4 112 par 3. Qu'observe-t-on ? Et pour la division euclidienne de 4 112 par 2 ?

Retenir

Un entier est un diviseur d'un autre entier lorsque le reste de la division euclidienne de par vaut zéro. On dit aussi que est un multiple de ou que est divisible par .

Remarque : 
 Quand un nombre vaut zéro, on dit qu'il est nul.

Remarque : 
 Si divise , est un multiple de et il existe donc un entier tel que . Par exemple, divise et .

Remarques : 
  • est divisible par tous les nombres entiers : si est un nombre entier, .
  • est divisible uniquement par .

Refaire
Vérifier si un nombre est un diviseur d'un autre nombre

Le nombre 7 divise-t-il les nombres suivants ? 25 et 42.
  • Posons la division euclidienne de 25 par 7.
    • Elle donne un quotient de 3 et un reste de 4.
      7 ne divise donc pas 25.
  • Posons la division euclidienne de 42 par 7.
    • Elle donne un quotient de 6 et un reste de 0.
      7 est donc un diviseur de 42 et 42 = 6 × 7.
Illustration de la division euclidienne posée.
Le zoom est accessible dans la version Premium.

B
Critère de divisibilité

Découvrir

Dans le tableau suivant, entourer en bleu les multiples de 2, en rouge ceux de 5 et en vert ceux de 10.

Remarque : 
Pour étudier la divisibilité de nombres simples, on peut effectuer la division entière et voir si le reste est nul. Pour des grands nombres, c'est plus compliqué ! On peut alors utiliser les critères suivants.

Tableau rempli de 35 nombres.
Le zoom est accessible dans la version Premium.

Retenir

  • Un nombre divisible par 2 est appelé nombre pair. Un nombre entier est divisible par 2 si son dernier chiffre est 0, 2, 4, 6 ou 8.
    • 74 est divisible par 2 alors que 75 ne l'est pas.

  • Un nombre entier est divisible par 5 si son dernier chiffre est 0 ou 5.
    • 595 est divisible par 5 alors que 778 ne l'est pas.

  • Un nombre entier est divisible par 10 si son dernier chiffre est 0.
    • 450 est divisible par 10 alors que 7 758 ne l'est pas.

  • Un nombre entier est divisible par 3 si la somme de ses chiffres est un multiple de 3.
    • On additionne les chiffres de 612 : .
      9 est divisible par 3 alors 612 est aussi divisible par 3.
    • On additionne les chiffres de 599 : .
      On veut maintenant savoir si 23 est divisible par 3. On additionne les chiffres de 23 : . Comme 5 n'est pas divisible par 3 alors 599 ne l'est pas non plus.

  • Un nombre entier est divisible par 9 si la somme de ses chiffres est un multiple de 9.
    • On additionne les chiffres de 513 : . Comme 9 est divisible par 9, 513 l'est aussi.
    • On additionne les chiffres de 731 : . Comme 11 n'est pas divisible par 9, 731 ne l'est pas non plus.

  • Un nombre entier est divisible par 4 si ses deux derniers chiffres forment un nombre divisible par 4.
    • On prend les deux derniers chiffres de 1 479 568 qui sont 6 et 8. Si l'on effectue la division de 68 par 4, on obtient un reste nul : 1 479 568 est donc divisible par 4.
    • On considère les deux derniers chiffres de 848 945. Si l'on effectue la division de 45 par 4, on obtient . 848 945 n'est donc pas divisible par 4.

Refaire
Utiliser les critère de divisibilité

  • Les nombres 42 et 43 sont-ils divisibles par 2 ?
    • On regarde le dernier chiffre de ces deux nombres. Pour 42 c'est 2. Donc 42 est divisible par 2 (). Pour 43 c'est 3. Donc 43 n'est pas divisible par 2.

  • Les nombres 39 et 40 sont-ils divisibles par 3 ?
    • La somme des chiffres de 39 vaut . La somme des chiffres de 12 vaut . On sait donc que 12 est divisible par 3 et 39 l'est aussi (). La somme des chiffres de 40 est , qui n'est pas divisible par 3. Donc 40 n'est pas divisible par 3.

  • Les nombres 2 196 et 2 198 sont-ils divisibles par 4 ?
    • Les deux derniers chiffres de 2 196 et 2 198 forment 96 et 98. La division euclidienne de 96 par 4 donne un reste de 0 (en effet ) et celle de 98 par 4 donne un reste de 2 (on a ). Seul 2 196 est divisible par 4.

Exercice 4
Les nombres suivants sont-ils des multiples de 2, 5, 10, 3, 9, ou 4 ?

1. 8
2. 45
3. 20
4. 8 754
5. 666
6. 8 280

Exercice 5
Donner tous les diviseurs des nombres suivants

1. 8
2. 15
3. 22
4. 27
5. 17
6. 42

Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

Oups, une coquille

j'ai une idée !

Nous préparons votre pageNous vous offrons 5 essais
collaborateur

collaborateurYolène
collaborateurÉmilie
collaborateurJean-Paul
collaborateurFatima
collaborateurSarah

Premium activé


5
essais restants
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.