Chargement de l'audio en cours
Plus

Plus

Problèmes résolus
P.319

Mode édition
Ajouter

Ajouter

Terminer

Terminer

Mathématiques - Problèmes résolus


Problèmes résolus




Voir les réponses

Exercice 51 : Soit ABCD un carré et A'B'C'D son symétrique par rapport à D.

Graphique lié à l'exercice 1
1
Montrez que ACA'C' est un carré.

Voir les réponses

Méthode 1

Pour prouver qu’un quadrilatère est un carré, on va montrer :
  • Que ses diagonales se coupent en leur milieu : c’est un parallélogramme ;
  • Que ses diagonales se coupent perpendiculairement : c’est un losange ;
  • Que ses diagonales sont de même longueur : c’est un rectangle.
D’après le cours, un parallélogramme qui est à la fois un rectangle et un losange est un carré.

Corrigé 1

  • A' est le symétrique de A par rapport à D, donc AD = DA'. De même, DC = DC'. [AA'] et [CC'] se coupent en D qui est leur milieu, donc ACA'C' est un parallélogramme.
  • ABCD est un carré donc . Donc les diagonales [AA'] et [CC'] se coupent perpendiculairement. Donc ACA'C' est un losange.
  • ABCD est un carré donc AD = DC. On sait de plus que AD = DA' et DC = DC'. D’où AA' = CC'. Les diagonales de ACA'C' sont de même longueur, c’est donc un rectangle.
  • ACA'C' est à la fois un losange et un rectangle : c’est donc un carré.

Méthode 2

Pour prouver qu’un quadrilatère est un carré, on va montrer :
  • Que ses côtés sont deux à deux de même longueur : c’est un parallélogramme ;
  • Que deux côtés consécutifs sont de même longueur : c’est un losange ;
  • Qu’il possède un angle droit : c’est un rectangle.
D’après le cours, un parallélogramme qui est à la fois un rectangle et un losange est un carré.

Corrigé 2

  • [A'C'] est le symétrique de [AC] par rapport à D, donc A'C' = AC. C est le symétrique de C' par rapport à D, donc l’image de [AC'] par la symétrie de centre D est [A'C], d’où AC' = A'C. Les côtés opposés de ACA'C' sont deux à deux de même longueur, donc ACA'C' est un parallélogramme.
  • DC = DC' et (AD) et (CC') sont perpendiculaires donc C' est l’image de C par la symétrie d’axe (AD). Donc AC = AC', donc ACA'C' est un losange.
  • ADC est un triangle isocèle rectangle en D. Donc . C' est le symétrique de C par rapport à (AD) donc . Ainsi . ACA'C' est un parallélogramme avec un angle droit : c’est donc un rectangle.
  • ACA'C' est à la fois un losange et un rectangle : c’est donc un carré.
Voir les réponses

Exercice 52 : Triangle rectangle et losange.

Graphique lié à l'exercice 1
Soit le triangle ABC rectangle en A.

1
Reproduisez et placez le symétrique C' de C par rapport à (AB) et B' de B par rapport à (AC).



2
Montrez que C'BCB' est un losange.



Voir les réponses