def premier(n): if n == 1: return False if n == 2: return True else: for i in range(2, n): if ... : return False return True
N = 1000 congruence = [0, 0, 0, 0, 0, 0, 0] for i in range(N): reste = ... congruence[reste] = congruence[reste] + 1 # calcul des fréquences for k in range(len(congruence)): congruence[k] = ... print(congruence)
def euclide_iteratif(a, b): a, b = max(a, b), min(a, b) reste = b while a%b … : reste = a%b a, b = ... , ... return ... def euclide_recursif(a, b): a, b = max(a, b), min(a, b) if a%b == 0: return ... else: return ...
def pgcd_balayage(a, b): for i in range(...): if a%i == 0 and ... : pgcd = ... return pgcd
def euclide_recursif(a, b): a, b = max(a, b), min(a, b) if a%b == 0: return ... else: return ...