Physique-Chimie Terminale Spécialité

Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Préparation aux épreuves du Bac
1. Constitution et transformations de la matière
Ch. 1
Modélisation des transformations acide-base
Ch. 2
Analyse physique d'un système chimique
Ch. 3
Méthode de suivi d'un titrage
Ch. 4
Évolution temporelle d'une transformation chimique
Ch. 5
Évolution temporelle d'une transformation nucléaire
BAC
Thème 1
Ch. 6
Évolution spontanée d'un système chimique
Ch. 7
Équilibres acide-base
Ch. 8
Transformations chimiques forcées
Ch. 9
Structure et optimisation en chimie organique
Ch. 10
Stratégies de synthèse
BAC
Thème 1 bis
2. Mouvement et interactions
Ch. 11
Description d'un mouvement
Ch. 12
Mouvement dans un champ uniforme
Ch. 13
Mouvement dans un champ de gravitation
Ch. 14
Modélisation de l'écoulement d'un fluide
BAC
Thème 2
3. Conversions et transferts d'énergie
Ch. 15
Étude d’un système thermodynamique
Ch. 16
Bilans d'énergie thermique
BAC
Thème 3
4. Ondes et signaux
Ch. 17
Propagation des ondes
Ch. 18
Interférences et diffraction
Ch. 19
Lunette astronomique
Ch. 20
Effet photoélectrique et enjeux énergétiques
Ch. 21
Évolutions temporelles dans un circuit capacitif
BAC
Thème 4
Annexes
Ch. 22
Méthode
Chapitre 18
Activité 2 - Activité expérimentale
60  min

Interférences d'ondes lumineuses

Ce document est actuellement projeté sur le côté de votre écran.
Objectif : Prévoir les lieux d'interférences dans le cas des trous d'Young, établir et exploiter l'expression de l'interfrange.
Ce document est actuellement projeté sur le côté de votre écran.
Problématique de l'activité
D'Isaac Newton à Christian Huygens, les scientifiques du XVIIe siècle ont débattu sur la nature de la lumière. L'expérience historique de Thomas Young au XIXe siècle a permis de mettre en évidence sa caractéristique ondulatoire.
Quelle condition est nécessaire pour l'obtention de figures d'interférences  ?
Ce document est actuellement projeté sur le côté de votre écran.

Ce document est actuellement projeté sur le côté de votre écran.

Doc. 1
Expérience de Thomas Young (1801)

L'expérience est reproductible grâce aux sources lumineuses laser. Le principe est le suivant : une onde monochromatique traverse une plaque percée de deux fentes. Lorsque les fentes sont fines, l'image observée sur l'écran est différente de l'image prédite par l'optique géométrique, à savoir deux fentes.

Expérience de Thomas Young
Le zoom est accessible dans la version Premium.
Crédits : lelivrescolaire.fr
Ce document est actuellement projeté sur le côté de votre écran.

Doc. 2
Différence de chemin optique

Les deux fentes se comportent commes des sources secondaires cohérentes dont les ondes lumineuses peuvent interférer. Les zones sombres correspondent à des interférences destructives, les zones brillantes à des interférences constructives : on parle de franges d'interférences. L'intensité lumineuse pour un point donné de l'écran dépend de la différence entre les chemins optiques empruntés par chaque onde lumineuse.

Si est suffisamment grand et suffisamment petit :



 : différence de chemin optique (m)
 : distance séparant le centre des deux fentes (m)
 : position du point (m)
 : distance entre les fentes et l'écran (m)

Différence de chemin optique
Le zoom est accessible dans la version Premium.
Crédits : lelivrescolaire.fr
Ce document est actuellement projeté sur le côté de votre écran.

Doc. 3
Matériel nécessaire

  • Deux lasers identiques
  • Fentes d'Young
  • Écran
  • Double décimètre
  • Banc d'optique avec supports
Ce document est actuellement projeté sur le côté de votre écran.

Ce document est actuellement projeté sur le côté de votre écran.
Questions
REA : Effectuer des mesures avec des capteurs
REA : Respecter les règles de sécurité
Compétence(s)
1. Préciser les valeurs de la différence de chemin optique pour lesquelles les interférences sont constructives. Même question concernant les interférences destructives.

2. D'après le schéma du doc. 2, déterminer l'expression de la position du point , centre de la première frange brillante, en fonction de , et . Même question concernant la position du point , centre de la deuxième frange brillante.

3. En déduire l'expression de la distance séparant et , appelée interfrange .

4. Réaliser le montage en utilisant un seul laser éclairant les deux fentes et en prenant une distance minimale de m. Mesurer l'interfrange et calculer .

5. En considérant l'incertitude fournie par le constructeur, et les incertitudes et correspondant aux écarts entre deux graduations, en déduire l'incertitude  :

Ce document est actuellement projeté sur le côté de votre écran.
Synthèse de l'activité
Reprendre l'expérience avec un laser devant chaque fente. Interpréter l'observation.

Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

Oups, une coquille

j'ai une idée !

Nous préparons votre pageNous vous offrons 5 essais
collaborateur

collaborateurYolène
collaborateurÉmilie
collaborateurJean-Paul
collaborateurFatima
collaborateurSarah
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.