Pronote
Connectez-vous pour ajouter des favoris

Pour pouvoir ajouter ou retrouver des favoris, nous devons les lier à votre compte.Et c’est gratuit !

Problèmes résolus

51

Soit ABCD un carré et A'B'C'D son symétrique par rapport à D.

Méthode 1

Pour prouver qu’un quadrilatère est un carré, on va montrer :
  • Que ses diagonales se coupent en leur milieu : c’est un parallélogramme ;
  • Que ses diagonales se coupent perpendiculairement : c’est un losange ;
  • Que ses diagonales sont de même longueur : c’est un rectangle.
D’après le cours, un parallélogramme qui est à la fois un rectangle et un losange est un carré.
Méthode 2

Pour prouver qu’un quadrilatère est un carré, on va montrer :
  • Que ses côtés sont deux à deux de même longueur : c’est un parallélogramme ;
  • Que deux côtés consécutifs sont de même longueur : c’est un losange ;
  • Qu’il possède un angle droit : c’est un rectangle.
D’après le cours, un parallélogramme qui est à la fois un rectangle et un losange est un carré.
Corrigé 1
  • A' est le symétrique de A par rapport à D, donc AD = DA'. De même, DC = DC'. [AA'] et [CC'] se coupent en D qui est leur milieu, donc ACA'C' est un parallélogramme.
  • ABCD est un carré donc ADC^=90\widehat{\text{ADC}} = 90^{\circ}. Donc les diagonales [AA'] et [CC'] se coupent perpendiculairement. Donc ACA'C' est un losange.
  • ABCD est un carré donc AD = DC. On sait de plus que AD = DA' et DC = DC'. D’où AA' = CC'. Les diagonales de ACA'C' sont de même longueur, c’est donc un rectangle.
  • ACA'C' est à la fois un losange et un rectangle : c’est donc un carré.
Corrigé 2
  • [A'C'] est le symétrique de [AC] par rapport à D, donc A'C' = AC. C est le symétrique de C' par rapport à D, donc l’image de [AC'] par la symétrie de centre D est [A'C], d’où AC' = A'C. Les côtés opposés de ACA'C' sont deux à deux de même longueur, donc ACA'C' est un parallélogramme.
  • DC = DC' et (AD) et (CC') sont perpendiculaires donc C' est l’image de C par la symétrie d’axe (AD). Donc AC = AC', donc ACA'C' est un losange.
  • ADC est un triangle isocèle rectangle en D. Donc DAC^=45\widehat{\text{DAC}} = 45^{\circ}. C' est le symétrique de C par rapport à (AD) donc DAC^=45\widehat{\text{DAC}^{\prime}} = 45^{\circ}. Ainsi CAC^=90\widehat{\text{CAC}^{\prime}} = 90^{\circ}. ACA'C' est un parallélogramme avec un angle droit : c’est donc un rectangle.
  • ACA'C' est à la fois un losange et un rectangle : c’est donc un carré.
Se connecter

Livre du professeur

Pour pouvoir consulter le livre du professeur, vous devez être connecté avec un compte professeur et avoir validé votre adresse email académique.

Votre avis nous intéresse !
Recommanderiez-vous notre site web à un(e) collègue ?

Peu probable
Très probable

Cliquez sur le score que vous voulez donner.

Dites-nous qui vous êtes !

Pour assurer la meilleure qualité de service, nous avons besoin de vous connaître !
Cliquez sur l'un des choix ci-dessus qui vous correspond le mieux.

Nous envoyer un message




Nous contacter?