✔Utiliser le produit scalaire pour déterminer si deux vecteurs sont orthogonaux.
17 professeurs ont participé à cette page
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Définition
Deux vecteurs sont dits orthogonaux si leurs directions sont perpendiculaires.
Exemple : Sur le schéma ci-dessous, \overrightarrow{\mathrm{AB}} est un représentant du vecteur \vec{u} et \overrightarrow{\mathrm{AC}} est un représentant du vecteur \vec{v}. Comme les droites \text{(AB)} et \text{(AC)} sont perpendiculaires, les vecteurs \vec{u} et \vec{v} sont orthogonaux.
Le zoom est accessible dans la version Premium.
Propriété
Deux vecteurs non nuls sont orthogonaux si, et seulement si, \vec{u} \cdot \vec{v}=0.
Remarque :\overrightarrow{0} est orthogonal à tout vecteur.
Exemple : Soit \vec{u} et \vec{v} deux vecteurs tels que \|\vec{u}\|=3,\|\vec{v}\|=4 et \|\vec{u}+\vec{v}\|=5. \vec{u} \cdot \vec{v}=\frac{1}{2}\left(5^{2}-4^{2}-3^{2}\right)=\frac{1}{2}(25-16-9)=0. Donc \vec{u} et \vec{v} sont orthogonaux.
Le zoom est accessible dans la version Premium.
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice corrigé
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Énoncé
Dans un repère orthonormé, on considère les points \text{A}(1\: ; 1),\text{B}(0{,}5\: ; - 2) et \text{C}(-8 \:; 2{,}5).
Montrer que le triangle \text{ABC} est rectangle.
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Solution
Le zoom est accessible dans la version Premium.
On peut conjecturer que \text{ABC} est rectangle en \text{A.} \overrightarrow{\mathrm{AB}} et \overrightarrow{\mathrm{AC}} ont pour coordonnées \left(\begin{array}{l}
0{,}5-1 \\
-2-1
\end{array}\right) et \left(\begin{array}{l}
-8-1 \\
2{,}5-1
\end{array}\right), soit \overrightarrow{\mathrm{AB}}\left(\begin{array}{c}
-0{,}5 \\
-3
\end{array}\right) et \overrightarrow{\mathrm{AC}}\left(\begin{array}{c}
-9 \\
1{,}5
\end{array}\right).
Donc \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=-0{,}5 \times(-9)+(-3) \times 1{,}5=4{,}5-4{,}5=0.
Ainsi \overrightarrow{\mathrm{AB}} et \overrightarrow{\mathrm{AC}} sont orthogonaux et donc \text{ABC} est rectangle en \text{A.}
Méthode
On fait un schéma et on conjecture en quel sommet est l'angle droit.
On calcule les coordonnées des vecteurs associés aux côtés de l'angle droit.
On calcule leur produit scalaire en utilisant la formule \vec{u} \cdot \vec{v}=x x^{\prime}+y y^{\prime} et on vérifie qu'il est égal à 0.
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercices
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 33
Dans un repère orthonormé, on considère les vecteurs \vec{u}\left(\begin{array}{l}
-3 \\
0{,}4
\end{array}\right) et \vec{v}\left(\begin{array}{c}
1{,}2 \\
1
\end{array}\right). Les vecteurs \vec{u} et \vec{v} sont-ils orthogonaux ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 34
Le triangle ci-dessous est-il rectangle ?
Le zoom est accessible dans la version Premium.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 35
Dans un repère orthonormé, on considère les points \mathrm{A}(0 \:; 4),\mathrm{B}(2{,}4\: ; 1) et \mathrm{C}(-3{,}75 \:; 1). Montrer que le triangle \text{ABC} est rectangle en \text{A.}
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 36
Dans un repère orthonormé, on considère les points \mathrm{A}(-0{,}75 \:; 5{,}5),\mathrm{B}(-0{,}25 \:; 2) et \mathrm{C}(0{,}75 \:; 2{,}5). Montrer que le triangle \text{ABC} est rectangle en \text{C.}
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 37
Dans un repère orthonormé, on considère les points \text{A,}\text{B,}\text{C} et \text{D,} de coordonnées respectives \mathrm{A}(6 \:;-2),\mathrm{B}(6 \:; 0{,}4),\mathrm{C}(7{,}6 \:; 2) et \mathrm{D}(7{,}6 \:;-0{,}4).
Le zoom est accessible dans la version Premium.
Les diagonales \text{[AC]} et \text{[BD]} du quadrilatère \text{ABCD} sont-elles perpendiculaires ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 38
Dans un repère orthonormé, les droites d et \text{D} admettent respectivement pour vecteur directeur \vec{u}\left(\begin{array}{l}
1 \\
1
\end{array}\right) et \vec{v}\left(\begin{array}{c}
1 \\
-1{,}4
\end{array}\right).
Ces droites sont-elles perpendiculaires ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 39
Soit \vec{u} et \vec{v} deux vecteurs tels que \|\vec{u}\|=5,\|\vec{v}\|=12 et \|\vec{u}+\vec{v}\|=13. Les vecteurs \vec{u} et \vec{v} sont-ils orthogonaux ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 40
Soit \vec{u} et \vec{v} deux vecteurs tels que \|\vec{u}\|=0{,}15,\|\vec{v}\|=0{,}1 et \|\vec{u}+\vec{v}\|=0{,}17. Les vecteurs \vec{u} et \vec{v} sont-ils orthogonaux ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 41
Soit \vec{u} et \vec{v} deux vecteurs orthogonaux tels que \|\vec{u}\|=7 et \|\vec{v}\|=24. Calculer \| \vec{u}+\vec{v} \|.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 42
Dans le rectangle \text{ABIH,} on sait que \text{HD = HA} et \overrightarrow{\mathrm{HC}}=\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{DI}}.
Le zoom est accessible dans la version Premium.
En se plaçant dans le repère (\mathrm{H} \:; \overrightarrow{\mathrm{HD}}, \overrightarrow{\mathrm{HA}}),
montrer que les droites \text{(BC)} et \text{(AD)} sont perpendiculaires.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 43
Soit \vec{u}\left(\begin{array}{c}
15 \\
-1{,}8
\end{array}\right) et \vec{v}\left(\begin{array}{l}
6 \\
x
\end{array}\right) dans un repère
orthonormé.
Déterminer la valeur du réel x tel que
\vec{u} et \vec{v} soient orthogonaux.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 44
Dans un triangle \text{HEC,}\text{CH = 6} et \text{HE} = \text{EC} = 3\sqrt2. Est-ce que le triangle \text{HEC} est
rectangle ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 45
Soit x un nombre réel, \text{O,}\text{A} et \text{B} les points de coordonnées \mathrm{O}(0 \:; 0),\mathrm{A}(2 \:; 3{,}5) et \mathrm{B}(-1 \:; x) dans un repère orthonormé.
1. Calculer les coordonnées de \overrightarrow{\mathrm{OA}} et exprimer celles du vecteur \overrightarrow{\mathrm{OB}} en fonction de x.
2. Déterminer la valeur de x telle que le triangle \text{OAB} soit rectangle en \text{O.}
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 46
Soit \vec{u}\left(\begin{array}{l}
2 \\
1
\end{array}\right) et \vec{v}\left(\begin{array}{l}
1 \\
x
\end{array}\right) dans un repère orthonormé.
Calculer la valeur de x telle que \vec{u}
soit orthogonal à \vec{v}.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 47
Dans un repère orthonormé, on considère le point \text{F}(-1 \:; 1) et le vecteur \vec{u}\left(\begin{array}{c}
16 \\
0
\end{array}\right). 1. Soit x et y deux nombres réels, et \text{M} le point de coordonnées \text{M}(x \:; y). Exprimer les coordonnées du vecteur \vec{\text{FM}} en fonction de x et y.
2. Déterminer pour quelle valeur de x les vecteurs \vec{u} et \vec{\text{FM}} sont orthogonaux.
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
Exercice 48
Soit x un réel, et \mathrm{O}(0 \:; 0),\mathrm{A}(-2 \:;-5) et \mathrm{B}(x \:;-5) trois points dans un repère orthonormé.
1. Exprimer les coordonnées de \vec{\text{BO}} et \vec{\text{BA}} en fonction de x.
2. Déterminer la valeur de x telle que le triangle \text{OAB} soit rectangle en \text{B.}
Afficher la correction
Une erreur sur la page ? Une idée à proposer ?
Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.
Oups, une coquille
j'ai une idée !
Nous préparons votre pageNous vous offrons 5 essais
Yolène
Émilie
Jean-Paul
Fatima
Sarah
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.