Mathématiques Terminale Spécialité

Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Rappels de première
Algèbre et géométrie
Ch. 1
Combinatoire et dénombrement
Ch. 2
Vecteurs, droites et plans de l’espace
Ch. 3
Orthogonalité et distances dans l’espace
Analyse
Ch. 4
Suites
Ch. 5
Limites de fonctions
Ch. 6
Continuité
Ch. 7
Compléments sur la dérivation
Ch. 8
Logarithme népérien
Ch. 9
Fonctions trigonométriques
Ch. 11
Calcul intégral
Probabilités
Ch. 12
Loi binomiale
Ch. 13
Sommes de variables aléatoires
Ch. 14
Loi des grands nombres
Annexes
Exercices transversaux
Grand Oral
Apprendre à démontrer
Cahier d'algorithmique et de programmation
Chapitre 10
Exercices

Travailler les automatismes

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
À l'oral
Envie de réaliser ces exercices à l'oral ? Enregistrez-vous !
Enregistreur audio
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
19
Les fonctions x \mapsto 4x+1 et x \mapsto 4x sont‑elles des primitives sur \R de la même fonction ? Justifier.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
20
Montrer que x \mapsto x^{2} et x \mapsto x^{2}-1 sont solutions de l'équation différentielle y'=2x.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
21
1. Déterminer les solutions de l'équation différentielle y^{\prime}=\frac{1}{2 \sqrt{x}} définies sur ] 0~;+\infty[.

2. Déterminer les solutions de l'équation différentielle y^{\prime}=-\frac{1}{x^{2}} définies sur ] 0~;+\infty[.

3. Déterminer les solutions de l'équation différentielle y^{\prime}=\frac{2}{x^{3}} définies sur ] 0~;+\infty[.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
22
1. Déterminer les solutions de l'équation différentielle y^{\prime}=\mathrm{e}^{x}.

2. Déterminer les solutions de l'équation différentielle y^{\prime}=3 \mathrm{e}^{3 x+1}.

3. Déterminer les solutions de l'équation différentielle y^{\prime}=-3 x^{2} \mathrm{e}^{-x^{3}}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
23
1. Déterminer les solutions de l'équation différentielle y^{\prime}=y.

2. Déterminer les solutions de l'équation différentielle \frac{y^{\prime}}{3}+y=0.

3. Déterminer les solutions de l'équation différentielle y^{\prime}-y=1.

4. Déterminer les solutions de l'équation différentielle 3 y^{\prime}=3 y-3.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
24
La fonction \varphi: x \mapsto x+2 est‑elle une solution de l'équation différentielle 2 y^{\prime}=y+x ? Justifier.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
25
Déterminer les solutions de l'équation différentielle y^{\prime}+y=x après avoir vérifié que \varphi: x \mapsto x-1 en est une solution particulière.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Déterminer des primitives
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
26

Dans chaque cas, déterminer une primitive de la fonction donnée.

1. x \mapsto-3

2. x \mapsto 2 x-\frac{1}{3}

3. x \mapsto \frac{x^{2}}{3}-x

4. x \mapsto 3 x^{2}+\frac{2 x}{3}-8
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
27
Déterminer sur ] 0~;+\infty[ la primitive \text{F} de la fonction définie par f(x)=\frac{1}{x^{2}}-1 vérifiant \mathrm{F}(1)=-1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
28
Déterminer sur \R la primitive \text{F} de la fonction définie par f(x)=\mathrm{e}^{x} telle que \mathrm{F}(0)=\mathrm{e}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
29
Déterminer sur \R la primitive \text{F} de la fonction définie par f(x)=3 x^{2}-2 x telle que \mathrm{F}(1)=2.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
30

Dans chaque cas, déterminer une primitive de la fonction donnée.

1. x \mapsto \mathrm{e}^{x}-2 \mathrm{e}^{-x}

2. x \mapsto \frac{2 x}{\left(x^{2}+3\right)^{2}}

3. x \mapsto \frac{x}{2 \sqrt{x^{2}+1}}

4. x \mapsto \frac{9 x^{2}-3}{\left(x^{3}-x\right)^{2}}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
31

Dans chaque cas, déterminer sur \R la primitive \text{F} de la fonction f qui respecte la condition donnée.

1. f: x \mapsto x^{2} \mathrm{e}^{x^{3}} avec \mathrm{F}(1)=\mathrm{e}.

2. f: x \mapsto-x\left(1-x^{2}\right)^{3} avec \mathrm{F}(0)=-\frac{1}{2}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Équations différentielles et fonctions de référence
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
32

Dans chaque cas, déterminer les solutions de l'équation différentielle donnée.

1. y^{\prime}=2

2. y^{\prime}=1-2 x

3. y^{\prime}=5 x-3

4. y^{\prime}=x^{2}

5. y^{\prime}=3 x^{2}+2 x+1

6. y^{\prime}=x^{3}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
33
Déterminer les solutions de l'équation différentielle y^{\prime}=\frac{1}{x^{3}} définies sur ]0~;+\infty[.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
34
Déterminer les solutions de l'équation différentielle y^{\prime}=x^{2}-\frac{1}{\sqrt{x}} définies sur ]0~;+\infty[.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Montrer qu'une fonction est une primitive
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
35

Dans chaque cas, montrer que la fonction \text{F} est une primitive de la fonction f sur l'intervalle \text{I} considéré.

1. \mathrm{F}: x \mapsto \frac{\mathrm{e}^{x}}{2 x+1} ; f: x \mapsto \frac{\mathrm{e}^{x}(2 x-1)}{(2 x+1)^{2}} ; \mathrm{I}=]-\frac{1}{2} ;+\infty[

2. \mathrm{F}: x \mapsto(-6 x-14) \mathrm{e}^{-0{,}6 x}-1{,}4 x ; f: x \mapsto(3{,}6 x+2{,}4) \mathrm{e}^{-0{,}6 x}-1{,}4 ; \mathrm{I}=\mathbb{R}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
36

Déterminer dans chaque cas les valeurs des paramètres a, b, c et d pour lesquelles la fonction \text{F} est une primitive de f sur \R.

1. f(x)=x^{2}-3 x+5 et \mathrm{F}(x)=a x^{3}+b x^{2}+c x+d.

2. f(x)=-5 x^{2}+7 x-1 et \mathrm{F}(x)=a x^{3}+b x^{2}+c x+d.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Équations différentielles et fonction exponentielle
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
37
Déterminer les solutions de l'équation différentielle y^{\prime}=-\mathrm{e}^{x}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
38

Dans chaque cas, déterminer les solutions de l'équation différentielle donnée.

1. y^{\prime}=-2 \mathrm{e}^{-2 x}

2. y^{\prime}=4 \mathrm{e}^{-5 x}

3. y^{\prime}=-2 \mathrm{e}^{6 x-7}

4. y^{\prime}=x \mathrm{e}^{-x^{2}}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Équations différentielles avec condition initiale
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
39
Déterminer la solution \text{F} de l'équation différentielle y^{\prime}=x-1 telle que \mathrm{F}(1)=-1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
40
Déterminer la solution \text{F} de l'équation différentielle y^{\prime}=x^{2}-x+1 telle que \mathrm{F}(0)=0.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
41
Déterminer la solution \text{F} de l'équation différentielle y^{\prime}=x^{3}+x+\frac{1}{x^{2}} définie sur ]0~;+\infty[ telle que \mathrm{F}(1)=\frac{3}{4}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
42
Déterminer la solution \text{F} de l'équation différentielle y^{\prime}=\frac{2 x^{3}-3 x^{2}+2}{x^{5}} définie sur ]-\infty~; 0[ telle que \mathrm{F}(-1)=1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Équations différentielles \boldsymbol{y'=ay+b}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
43

Dans chaque cas, déterminer les solutions de l'équation différentielle donnée.

1. y^{\prime}-\frac{1}{2} y=0

2. 2 y^{\prime}-3 y=8 y+4 y^{\prime}

3. 5 y^{\prime}+3 y=0

4. -\frac{3}{2} y^{\prime}-\sqrt{2} y=0
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
44

Dans chaque cas, déterminer la solution \text{F} de l'équation différentielle donnée qui respecte la condition précisée.

1. y^{\prime}+\sqrt{2} y=0 avec \mathrm{F}(\sqrt{2})=1.

2. 2 y^{\prime}-3 y=2 y+3 y^{\prime} avec \mathrm{F}(0)=5.

3. \frac{1}{2} y^{\prime}+y=\frac{1}{2} y-y^{\prime} avec \mathrm{F}(3)=\frac{1}{\mathrm{e}}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
45

Dans chaque cas, déterminer les solutions de l'équation différentielle donnée.

1. 2 y^{\prime}-y=2

2. \sqrt{2} y^{\prime}=\sqrt{6} y-1
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
46

Dans chaque cas, déterminer la solution \text{F} de l'équation différentielle donnée qui respecte la condition précisée.

1. 2 y^{\prime}+3 y=3 y^{\prime}-2 y+3 avec \mathrm{F}\left(\frac{1}{5}\right)=-\frac{2}{5}.

2. 2 y^{\prime}-3 y=2 y-3 y^{\prime}+5 avec \mathrm{F}(0)=1.

3. 3 y^{\prime}-3 y=2 y^{\prime}-2 y+\mathrm{e}^{2} avec \mathrm{F}(2)=2 \mathrm{e}^{2}.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Équations différentielles \boldsymbol{y'=ay+f}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
47
Montrer que \varphi: x \mapsto 3 x-1 est une solution particulière de l'équation différentielle (\mathrm{E}): y^{\prime}+3 y=9 x, puis donner toutes les solutions de (\mathrm{E}).
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
48
Après avoir déterminé une fonction affine \varphi solution particulière de l'équation différentielle (\mathrm{E}): 2 y^{\prime}-y=2 x, déterminer la solution \text{F} de (\mathrm{E}) telle que \mathrm{F}(0)=-2.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
49
Montrer que \varphi: x \mapsto-x^{2}-x-1 est une solution particulière de l'équation différentielle y^{\prime}-3 y=3 x^{2}+x+2, puis donner toutes les solutions de cette équation.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
50
Après avoir déterminé une fonction polynôme du second degré \varphi solution particulière de l'équation différentielle (\mathrm{E}): y^{\prime}+2 y=4 x^{2}-2 x+1, déterminer la solution \text{F} de (\mathrm{E}) telle que \mathrm{F}(0)=4.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
51
Montrer que \varphi: x \mapsto x \mathrm{e}^{-x} est une solution particulière de l'équation différentielle (\mathrm{E}): y^{\prime}+y=\mathrm{e}^{-x}, puis donner toutes les solutions de cette équation.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
52
Après avoir déterminé une fonction \varphi de la forme x \mapsto m x \mathrm{e}^{2 x} (avec m \in \R) solution particulière de l'équation différentielle (\mathrm{E}): y^{\prime}-2 y=2 \mathrm{e}^{2 x}, déterminer la solution \text{F} de (\mathrm{E}) telle que \mathrm{F}(0)=-1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
53
Déterminer une fonction \varphi de la forme x \mapsto\left(a x^{2}+b x+c\right) \mathrm{e}^{2 x} (où a, b et c sont réels) solution particulière de l'équation différentielle (\mathrm{E}): 2 y^{\prime}-3 y=\left(x^{2}+5 x+3\right) \mathrm{e}^{2 x}, puis donner toutes les solutions de cette équation.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
54
Après avoir déterminé une solution particulière \varphi de l'équation différentielle (\mathrm{E}): y^{\prime}+y=2 x \mathrm{e}^{-x} sous la forme x \mapsto a x^{2} \mathrm{e}^{-x} (avec a \in \R), déterminer la solution \text{F} de (\mathrm{E}) telle que \mathrm{F}(-1)=1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
55
Déterminer une fonction \varphi de la forme x \mapsto\left(a x^{2}+b x\right) \mathrm{e}^{-2 x} (où a et b sont réels) solution particulière de l'équation différentielle (\mathrm{E}): y^{\prime}+2 y=(2 x+1) \mathrm{e}^{-2 x}, puis donner toutes les solutions de cette équation.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Exercices inversés
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
56
Déterminer deux équations différentielles distinctes vérifiées par la fonction x \mapsto 3 x^{2}-2 x+1.