Mathématiques Terminale Spécialité

Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Rappels de première
Algèbre et géométrie
Ch. 1
Combinatoire et dénombrement
Ch. 2
Vecteurs, droites et plans de l’espace
Ch. 3
Orthogonalité et distances dans l’espace
Analyse
Ch. 4
Suites
Ch. 5
Limites de fonctions
Ch. 6
Continuité
Ch. 7
Compléments sur la dérivation
Ch. 8
Logarithme népérien
Ch. 9
Fonctions trigonométriques
Ch. 10
Primitives - Équations différentielles
Ch. 11
Calcul intégral
Probabilités
Ch. 12
Loi binomiale
Ch. 13
Sommes de variables aléatoires
Ch. 14
Loi des grands nombres
Annexes
Exercices transversaux
Grand Oral
Apprendre à démontrer
Cahier d'algorithmique et de programmation
Chapitre 7
Auto‑évaluation

Exercices d'auto‑évaluation

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

QCM
Réponse unique

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Pour les exercices
7
à
9

Soit la fonction définie sur dont la courbe représentative est tracée ci‑dessous.

maths spé - chapitre 7 - Compléments sur la dérivation - exercices 7 à 9
Le zoom est accessible dans la version Premium.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
7
Que vaut  ?






Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
8
La fonction semble convexe sur l'intervalle :



Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
9
On note la dérivée de . On a alors :



Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
10
La dérivée de la fonction définie sur par est :







Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

QCM
Réponses multiples

Une ou plusieurs bonnes réponses par question
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
11

La fonction dérivée de la fonction définie sur par et  :







Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
12

La fonction définie sur par est :




Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
13

La fonction définie sur par  :




Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
14

La fonction définie sur par  :




Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Problème

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
15
Soit la fonction définie sur par .

1. Étudier les variations de sur .


2. Étudier la convexité de sur .


3. Quelles sont les coordonnées des éventuels points d'inflexion de la courbe représentative de  ? Justifier.


Dessinez ici
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

QCM
Supplémentaires

Une ou plusieurs bonnes réponses par question
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
A

Vrai ou faux ? Soient une fonction définie et dérivable sur un intervalle et . La dérivée de est .


Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
B

Soit une fonction polynomiale du second degré telle que . On pose .
Laquelle de ces conditions est nécessaire et suffisante pour que la fonction soit convexe sur ?





Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
C

On considère la fonction définie sur .





Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
D

Une écriture de la dérivée de la fonction est :








Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
E

Que peut-on dire des fonctions et définies sur par et ?



Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
F

Une écriture de la dérivée de la fonction est :







Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
G

La fonction définie sur par est convexe sur :







Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
H

Combien de points d'inflexions peut posséder la courbe représentative d'une fonction polynomiale du quatrième degré ?







Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

Oups, une coquille

j'ai une idée !

Nous préparons votre pageNous vous offrons 5 essais
collaborateur

collaborateurYolène
collaborateurÉmilie
collaborateurJean-Paul
collaborateurFatima
collaborateurSarah
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.